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Abstract

Performance has been traditionally regarded as the most
important design goal for database management systems
(DBMSs). However, in recent years, the increasing en-
ergy cost gradually rivals the benefit of chasing after per-
formance. Therefore, there are strong financial incen-
tives to minimize power consumption of a database sys-
tem while maintaining its desired performance, so that
the energy cost can be best amortized. Such a goal is
challenging in practice because the power consumption
of a database system varies significantly with the envi-
ronment and workloads. Many modern hardware pro-
vide multiple modes with different power/performance
tradeoffs. However, existing research has not used these
power modes sufficiently to achieve the best tradeoff
for database services due to the lack of the knowledge
on database behavior under different power modes. In
this paper, we present Power-Aware Throughput control
(PAT), an online feedback control framework for energy
conservation at the DBMS level. In contrast to heuristic-
based tuning techniques commonly used in database sys-
tems, the design of PAT is based on rigorous control-
theoretic analysis for guaranteed control accuracy and
system stability. We implement PAT as an integrated
component of the PostgreSQL system and evaluate it
with workloads generated from various database bench-
marks. The results show that PAT achieves up to 51.3%
additional energy savings despite runtime workload dy-
namics and model errors, as compared to other compet-
ing methods.

1 Introduction

The rapid growth of energy-related research in databases
is driven by the fact that data centers are energy starving.
The increasing operating expenses of data centers (e.g.,
the electricity bill) quickly deplete the revenue earned
from database services due to its accumulating demand

of energy [18]. The power-performance tradeoff has now
become a new key challenge in general purpose database
system design [30].

Redesigning DBMS towards high energy efficiency
has been discussed in the database community. Poess
et al. [19] examine the power saving opportunities from
different hardware systems. Lang et al. [11] report large
energy savings by using the dynamic voltage and fre-
quency scaling (DVFS) technique in CPUs. However, it
is not a trivial task to harvest those opportunities in data
processing while maintaining the desired performance .
The DBMS performance could be very sensitive to the
changes in hardware power modes. For example, tun-
ing one step (25%) down in CPU frequency could re-
sult in about 30% performance degradation for CPU in-
tensive queries; in addition, switching low-power modes
in memory is a bad idea due to significant performance
degradation for any DBMS queries, as shown in Fig.1,
Section 2. Therefore, we cannot directly apply existing
hardware power management techniques in DBMSs for
the energy conservation.

It is also difficult to provide performance guarantees
in a DBMS due to workload variations and environment
dynamics. We need an adaptive architecture that could
promptly monitor query statistics from DBMS and de-
termine whether/to what extend adaption should be per-
formed. Attempting to solve the problem, some studies
employ simple hill-climbing strategies to make such im-
portant adaption decision [11, 10]. These ad hoc control
solutions cannot provide desired control performance,
such as zero steady-state error and short settling time
bound [4]. Although there are many control work done
at the OS level, such as [27, 26, 17], they are not feasi-
ble due to the lack of critical database information that is
needed for making adaptation decisions.

To address the aforementioned problems, we first need
to understand the nature of the DBMS’s response to the
changes of different hardware power modes (“knobs”).
Specifically, we need a quantitative system model in the
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adaptive framework that describes how the DBMS per-
formance changes in response to knobs tuning. Second,
the adaptive framework needs to be implemented in light
weight without affecting the normal DBMS operation.
Finally, the control algorithm shall be robust such that it
could tolerate errors from estimation in the DBMS opti-
mizer and workload variations.

In this paper, we present Power-Aware Throughput
control (PAT), an online feedback control framework for
energy conservation at the DBMS level, to address the
above challenges. Our solution takes advantage of well-
established techniques from the field of control theory,
to deal with systems that are subject to unpredictable dy-
namics [4]. In this solution, we formulate energy con-
servation with performance control at the DBMS level
into a feedback control problem and tackle it with a
proportional-integral (PI) controller based on the DBMS
system model. Specifically, this paper makes the follow-
ing contributions:

• We explore the relationship among query statistics,
the DBMS throughput, hardware power states, and
the active power consumption1 via empirical stud-
ies. Our results show that 1) there exists great en-
ergy savings when tuning DVFS for processing I/O
intensive queries; 2) The relationship between the
DBMS throughput and the CPU frequency is an ap-
proximated linear model when DBMS workloads
are steady; 3) the ratio of I/O intensive queries in the
workload plays a major role in the workload statis-
tics that affect the performance of the control.

• As one of the first attempts to introduce classic con-
trol theory into the energy management in DBMSs,
we design PAT to control the DBMS throughput
while minimizing the active power consumption.

• We design and implement a query classifier based
on the fuzzy set theory. The classifier provides
important information, such as the ratio of I/O
queries, which plays a key role in achieving effec-
tive throughput control. The fuzzy-logic-based de-
sign also provides new insights to the classic prob-
lem of query clustering.

• We implement PAT within the real DBMS – Post-
greSQL and evaluate it with various baselines. The
results show that, PAT has significantly more energy
saving (51.3%) with the least control errors compar-
ing with other control baselines.

The rest of the paper is organized as follows: we first
discuss our study on characterization of database system

1 we use the active power of the whole system for the measurement
throughout this paper. Any power data, if without specification, is the
active power of the system.

in Section 2. Section 3 introduces the overall control
framework; Sections 4 and 5 present the design and anal-
ysis of the workload classifier and controller in PAT, re-
spectively. Section 6 talks about our empirical evaluation
of the proposed control strategy. Section 7 compares our
work with related work; Section 8 concludes the paper.

2 System Characterization Study

In this section, we report our findings based on empirical
studies of database behavior as a foundation of control
framework design.2

In our study, we focus on the DBMS throughput
(query per second, QPS) as the main performance metric.
The throughput, as the reciprocal of the average response
time, is an important performance metric. For example,
transaction processing performance council (TPC) uses
throughput to define and rank the performance of differ-
ent DBMS products [22]. To keep the DBMS throughput
within a desired level is essential to avoid situations, such
as overloading. We take controlling the response time of
individual queries as a future work for the design of PAT,
which will not be discussed in this paper.

The impact of hardware power modes with different
DBMS workloads: to further understand the impact of
low-power modes in different hardware components on
the power consumption and the performance of database
services, we use five power states of the memory (de-
scribed in [3]), four discrete DVFS level of the CPU (de-
scribed in [27]), and the CPU C-state (described in [15]
and labeled as “DVFS0”). To avoid possible bias from
measurement errors, we repeat experiments using CPU
intensive and I/O intensive workloads in several trials
and collect the average result, demonstrated in Fig.1.

Fig.1(a) and Fig.1(b) show the DBMS performance
and the power measurement of different power states in
memory under two types of DBMS workloads. As we
can see, a state transition in memory, such as from the ac-
tive state to the active-standby state, can contribute to at
most a 10% saving in active power. However, the power
saving comes with a severe performance penalty as a
95% performance degradation in CPU workloads and a
98% degradation in I/O workloads after the transition.
The penalty comes from unacceptable low I/O band-
widths from memory low power modes, which make any
processing queries enter infinite cycles of I/O wait. Thus,
although [3] claims energy savings from tuning power
states in the memory, it may not be a feasible solution for
database services. As a result, we find that any hardware
power management techniques which increase per-page
I/O cost may have a severe consequence on the DBMS
throughput, which eventually leads to unacceptable high
energy cost.

2 details of the experiment setup can be found in Section 6.1.
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Figure 1: Performance (throughput) of a 100GB database system under low power states of the memory (Fig.a and
Fig.b) and the CPU (Fig.c and Fig.d). All data are normalized to the normal scenario with active memory and CPU
at 100% frequency. Fig.a and Fig.c are results of CPU-intensive queries. The rest are results of I/O intensive queries.
DVFS0 is the CPU C-state, in which the system is in halt and there is no observed DBMS throughput.

Fig.1(c) and Fig.1(d) illustrate the results of different
DBMS workloads running in different CPU power states.
One observation is that, in both I/O intensive and CPU
intensive queries, the active power cost monotonically
decreases with the CPU frequency. This is in conformity
with results reported in [14, 23]. The DBMS through-
put, on the other hand, shows the same behavior. Such
observations imply that CPU frequency and system per-
formance are positively related and this gives us confi-
dence in building an approximated linear system model
between performance and power consumption. Never-
theless, comparing Fig.1(c) and Fig.1(d), the DBMS sen-
sitivity3 is different in CPU intensive and I/O intensive
workloads. Apparently, one could harvest more power
savings from I/O intensive queries without affecting their
performance much.

Fig.1(c) and Fig.1(d) also demonstrate system reac-
tion to the CPU C-state (DVFS0) in terms of power and
performance. When the CPU is set to the C-state, the
whole system is in the halt state. We did not observe any
DBMS throughput although the active power consump-
tion is low. At the same time, the delay of transiting
in/out of the CPU C-state is so large that it jeopardizes
the normal query execution in the DBMS, and leads to
uncorrect query results. Thus, we do not implement the
CPU C-state in PAT for power saving purposes but eval-
uate it in a simulation in our tech report [29].

The above experimental results show that CPU DVFS
technique is a good candidate for the control actua-
tor. Next we further explore the insight from results of
Fig.1(c) and Fig.1(d).

CPU power states, the DBMS throughput and work-
load statistics: Fig.2(a), again, demonstrates the fact that
the active power consumption is linearly related to the
relative DVFS level. The power and the performance

3 The sensitivity is defined as the change of performance in response

to CPU frequency changes, as
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Figure 2: The impact of the CPU frequency (i.e., DVFS
level) on the power consumption (a) and the DBMS
throughput (b). The five workloads in (b) differ by their
ratios of I/O intensive queries λ . All data in (b) are nor-
malized to the largest throughput of the workload with
λ = 5% at the maximum CPU frequency.

data in Fig.2(b) are recorded from experiments running
DBMS workloads with different statistics (i.e., different
ratio of I/O intensive queries λ ). An important observa-
tion from Fig.2(b) is that, there exists a linear relation-
ship (R2 = 0.9633) between throughput and CPU fre-
quency for all DBMS workloads when λ is fixed. There-
fore, we use the following linear model to describe the
relationship between database throughput and CPU fre-
quency,

r = Aλ f +B (1)

Where r is the DBMS throughput, f is the CPU fre-
quency, and A,B are model coefficients.

Among all the workload characteristics, we found that
the ratio of I/O-intensive queries λ is the major fac-
tor that affects the sensitivity, as shown in Fig.2(b).
Our explanation is that, in our platform, Linux system
uses Round-Robin as the process scheduling algorithm.
Therefore, the more queries are bounded by I/O, the
larger chance that those processes will skip their CPU
time slices, thus keeping the CPU idle. As a result, a high
λ makes the system less sensitive to the CPU frequency
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Figure 3: The relationship between workload’s
frequency-to-throughput ratio and the percentage of I/O-
intensive queries in the workload (λ ).

changes. When λ is larger enough, as the grey line in
Fig.2(b), the database performance has little change with
the CPU frequency, where we could harvest the most en-
ergy savings. This sensitivity of the DBMS performance
to the CPU frequency changes is measured as the slopes
of all the throughput-DVFS lines in Fig.2(b).

Fig.3 shows that the relationship between λ and the
sensitivity is also linear (with a goodness-of-fit R2 =
95%). Since λ is essential in our throughput control, it is
necessary to estimate the value of λ to identify the work-
load at runtime. Note here, when the value of λ increases
from 20% to 30% in Fig.2(b), the DBMS throughput
drops heavily (50%) at the highest DVFS level. There
is a value between 20% to 30%, we called it β , that de-
fines an infection point. When the system crosses this
point (λ > β ), it will enter an I/O busy waiting state.
This state is a “Limbo” that we are trying to avoid in our
experiment. The value of β is a relative static number
for any given systems. It can be found during the sys-
tem identification process. In our experimental database
system, the value of β is found to be 32%.4

3 The Framework of PAT

The control framework PAT is illustrated in Fig.4. The
main components of PAT form a feedback control loop
(indicated by the red arrow in Fig.4), including the PI
controller (Controller), the throughput monitor of the
DBMS (Plant),5 and the CPU power state modulator
(Actuator). The goal of the control loop is to maintain
the DBMS throughput at the set point Rs and mini-
mize the power cost. Specifically, the following steps
are invoked in each control period,

1. The throughput monitor measures system through-
put r(i− 1) in the last period. The control error is
computed as Δr(i) = Rs − r(i− 1);

2. The controller receives the control error Δr and the
workload statistic factor λ . Based on these values,

4 The value of β needs to be calibrated when PAT is applied to a
different system environment

5 Note that the monitor itself is not the plant, the DBMS is.
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PAT Control 
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DBMS Clients
Data Flow

Control Path

(Actuator)

Figure 4: The power-aware throughput control architec-
ture. The names in parentheses are given following con-
trol terminology.

it computes the control signal f (i);

3. The CPU power state modulator receives the control
output f , to calculate the new DVFS level and apply
it in the CPU.

4. Exception: when λ > β or the DVFS level is high-
est but the detected throughput still fails to meet the
set point Rs, the CPU modulator will set the DVFS
level to the active lowest state to save power for a
short period of time t.

Note here, the duration t is shall be smaller than T , and
we assume the transaction time of different power state
is at least one order of magnitude smaller than t.

3.1 Control Components

Before discussing more details about the two major com-
ponents – the fuzzy workload classifier (FWC) and the
PI controller, we briefly introduce the implementation of
other components of PAT first.

CPU Power State Modulator: PAT uses Intel’s Speed-
Step technique (10ms overhead) to tune the CPU DVFS
level. An interesting issue is that the Intel Xeon CPU
E5645 used in our platform (as well as many other
DVFS-enabled CPUs) only supports several discrete
CPU frequency levels. However, PAT needs to set a
value of the DVFS level within a normalized continuous
range [0 – 100]. Therefore, the task of the modulator is
to approximate the desired value using a combination of
the supported discrete frequency levels. For example, to
get 2.23 GHz CPU frequency during one control period,
the modulator would output pseudo frequency signal se-
quence as {2.67, 2, 2, 2.67, 2, 2} to emulate the aver-
age CPU frequency as 2.23 GHz. To realize such idea,
we implemented a first-order delta-sigma modulator in
the system, which is commonly used in analog-to-digital
signal conversion [12].

Throughput Monitor: the throughput monitor is im-
plemented as a daemon program that collects the number
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of finished queries in each control period. The monitor
traces every exit signal from DBMS threads and records
the sum in period i. The monitor maintains throughput
data from the past n periods.

System Utilization Monitor: the system utilization
monitor is a program that records system status (e.g.,
CPU utilization) when PAT is active. We use the col-
lected data for the performance analysis.

Query Resource Consumption Estimator: the resource
estimator is a tool that retrieves the run-time query es-
timation information from the query optimizer of the
DBMS. Based on such information, FWC could define
the query type and update the corresponding parameter
λ . Note that the original resource estimator in the DBMS
could be highly unreliable. We calibrate this estimator
before using it for estimation. The detailed work can be
found in the tech report [29].

4 Fuzzy Workload Classifier

As we learned from the observations in Section 2, the key
factor in the workload statistics used in the system model
is the percentage of I/O intensive queries in the current
running workload, namely λ . Thus, to successfully build
the system model in order to control a composite work-
load, the model shall update the value of λ on-the-fly. To
solve this problem, we need to classify queries based on
its I/O intensity.

4.1 Main Challenge

Fig.5(a) shows the classification results of 500 queries
based on a static threshold – 1,000 demanding pages,
which is the size as the L3 cache in the server. Each
query is labeled as I/O-intensive if the I/O cost is more
than 1,000 pages (green node) or non-I/O intensive (red
node), otherwise. However, such a rule-based method
fails when the resource estimation given by the query
optimizer is not accurate enough to reflect the actual re-

quested resource at runtime. Fig.5(b) shows the real re-
source usage of the same set of queries. The results show
only a part of identified I/O queries are real I/O-intensive
queries (e.g., those nodes in circle A in Fig.5(b)). The
above empirical results show that simple rule based clas-
sification fails at obtaining the accurate λ value.

We propose a classification approach based on fuzzy
set theory to solve our problem. Fuzzy-based methods
are particularly suitable for systems with complex be-
haviors. They are designed to handle unpredictable envi-
ronment with limited number of rules to reach sufficient
accuracy [25, 21]. Our FWC collects workload statis-
tics and creates fuzzy rules to identify runtime resource
consumption patterns of queries in the workload.

4.2 Fuzzy Classifier Design

In FWC, Sugeno-type fuzzy rules [21] are generated
from the clustered data for modeling database workloads.
The input for the FWC is the resource demand of the in-
coming query and the output is the aggregated estimation
of runtime resource utilization. For the ith query, its re-
source demand vector is denoted as [d i

CPU ,d
i
I/O]

T and the

estimated CPU and I/O utilization as [ui
CPU ,u

i
I/O]

T . The
number of fuzzy rules shall be the same as the number
of clusters in the estimated resource demand map [8]. In
our case, there are two clusters: I/O-intensive and non-
I/O-intensive. The member functions of the fuzzy rules
are linear functions generated via rigorous mathematical
tools from Matlab [13]. The rule base is constructed as
follows:

Rj: IF [di
CPU ,d

i
I/O]

T ∈ cluster Xj, THEN

[ui
CPU ,u

i
I/O]

T = Mj[di
CPU ,d

i
I/O]

T +Nj

where Xj is the cluster determined by clustering tech-
nique, Mj and Nj are parameters from the fuzzy set asso-
ciated membership functions obtained from the learning
process. The symbol ∈ stands for the distance between
the node and the center of cluster X j. The procedure of
workload classification are as follows:

1. Evaluation: compute the appropriate fuzzy rule out-
put [ui

CPU ,u
i
I/O]

T based on the input resource de-

mand vector [dCPU ,dI/O]
T using the corresponding

membership functions M j and Nj;

2. Implication calculation: obtain implication p j of
each fuzzy set R j and calculate the confidence t j

that the query belongs to fuzzy set R j based on the

implication weight over all ∑(p j)−p j

∑(p j)
;

3. Aggregation result: the output of all fuzzy rules
are aggregated and inversely translated into the av-
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erage utilization vector [∑ j t jui
CPU ,∑ j t jui

I/O]
T from

all rules with confidence t j.

Although there still exist errors from workload classi-
fication, those errors are bounded and smaller than the
acceptable maximum tolerance (overshoot) in the con-
troller design. Due to the page limit, we put a detailed
analysis and examples of FWC in our tech report [29].
The accuracy of FWC is evaluated in Section 6.

5 Throughput Controller Design

5.1 System Modeling

Building an accurate mathematical model of the system
to be controlled is of great importance to the entire con-
trol loop design. We build the model of the DBMS
throughput and the power consumption based on obser-
vations in Section 2. Let us denote the length of the con-
trol period as T and the throughput within the i th period
as r(i). Given r(i), our control goal is to guarantee that
the DBMS throughput r could be converged to the set
point Rs after a finite number of control periods (settling
time). Note here, for better establishing the model we
scale those two values into percentage. Thus, Δr and
f are now the relative control error and the related fre-
quency setting, respectively. For example, f = 100%
means that CPU is running at its highest frequency. In
the experiment, the minimum available frequency is 40%
of the maximum frequency.

Here we update the system model in Eq. (1) as:

Δr(i) = λA f (i)+B (2)

For the convenience of the control analysis, Eq. (2) is
transformed in the z-domain as:

R(z) = λAF(z) (3)

where R(z),F(z) are the z-transform of signal Δr(i), f (i),
respectively. Thus, the system transfer function of the
DBMS throughput to the frequency change in Fig.2 is:

G(z) =
R(z)
F(z)

= λA (4)

We test the system with sinusoidal inputs in Fig.6. Fig.6
demonstrates that our model is sufficiently close to the
actual system with R2 = 0.9152.

5.2 Controller Design

The goal of the controller design is to meet the following
goals:

• stability, the throughput shall settle into a bounded
range in response to a bounded reference input;
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Figure 6: A sinusoidal throughput Δr(i) and related con-
trol signal f (i) .

• zero steady state error, when the system enters the
steady state, the throughput shall settle to the set
point with zero errors; and

• short settling time, the system shall settle to the set
point before the specified deadline.

Based on the control theory, we design a Proportional-
Integral (PI) control that has been widely adopted in in-
dustry control systems. We select the PI controller for its
nice property of the zero-state-error and its fast response
[4, 7]. The PI controller can also provide robust control
performance despite modeling error and input/output dis-
turbances. It has the following form in the discrete time
domain:

f (i) = kPΔr(i)+ kI

i

∑
1

(Δr( j)) (5)

where Δr(i) is the control error at ith period. f (i) is the
frequency offset. kI and kP are control parameters. Those
parameters can be analytically chosen to guarantee the
system stability and zero steady-state error. From Eq.
(5), we have the controller transform function in the z-
domain as:

C(z) =
z(kI + kP)− kP

z− 1
(6)

Overall, the transfer function F(z) = G(z)C(z) is,

F(z) =
λAkp(z− 1)+λAkIz

(1+λA(kI + kP))z− (λAkP+ 1)
(7)

We use the Root-Locus method [7] to design the con-
trol coefficients kI and kP to guarantee stability and zero
steady-state error. The poles of the transfer function are
−0.26±0.8i. As both eigenvalues are inside one unit cir-
cle, the closed-loop system in our experiments is stable
[4]. The values of the system model parameters in Eq.
(2) are A = 4.329 and B = 24.329, based on our char-
acterization study. λ is provided at runtime by FWC.
Based on the result of control analysis, control parame-
ters kI = 0.5 and kP = 1.06. More details of the control
analysis are in the tech report [29].
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Figure 7: A snapshot of the database throughput, the DVFS control signal and the active power consumption of
NORMAL, SPEEDSTEP and PAT in three different system settings.

6 Performance Evaluation
6.1 Experimental Setup

Our test bed contains an open-source database Post-
greSQL (version 8.3.18) running under Redhat 5 (kernel
version 3.0.0). The data server is a DELL PowerEdge
R710 with 12-core Intel Xeon E5645. A client feeds the
server with a typical database workload generated from
TPC tools [22] and SDSS traces [20]. We use a WattsUp
power meter ( ±1.5% error, 1 Hz sampling frequency
[1]) to measure the power consumption.

We have designed several baselines for evaluation.

1) NORMAL and TRADITION: those two baselines are
common Advanced Configuration and Power Inter-
faces (ACPIs) in modern servers. NORMAL is when
system runs with the maximum CPU frequency and
TRADITION sets a static CPU frequency based the
offline workload analysis.

2) SPEEDSTEP, HEURISTIC and SCTRL: SPEED-
STEP is the ACPI policy in BIOS that tunes
the CPU frequency according to the system load.
HEURISTIC is an ad hoc control solution with the
DBMS performance set point Rs. SCTRL is an OS-
level feedback control solution with the DBMS per-
formance set point Rs. Comparing with PAT, it con-
tains the basic control loop with throughput moni-
tor to detect the DBMS throughput except the FWC
and any internal parts of the DBMS in Fig.4. Note
that, when those control solutions control the CPU
frequency, other power management policies are
turned off.

6.2 Performance of PAT

To study the impact of PAT on performance and energy
savings, we have designed three scenarios from daily
DBMS operations. 1) Ideal environment: the database

process is the only user of all the computational re-
sources; 2) Competing environment, there exists a set
of pure CPU intensive programs in the system compet-
ing for the CPU resource. 3) Preemptive environment,
there exists a set of high-priority (OS-level) processes
which randomly occupies the CPU resource assigned for
database processes. Fig.7 shows the database through-
put, the DVFS control signal, and the active power con-
sumption of the system using NORMAL, Speedup and
PAT (Rs = 17QPS) in above scenarios in 50 control peri-
ods.

In Fig.7(a), SPEEDSTEP and PAT provide signifi-
cantly larger energy savings than NORMAL does. Com-
paring with SPEEDSTEP, PAT controls the throughput
performance strictly to the setpoint, and the maximum
overshoot (throughput exceeding the set point) is much
smaller.

In the competing scenario in Fig.7(b), the database
throughput is greatly affected by the competing CPU-
intensive processes, which are injected into the sys-
tem follows a Poisson distribution. The noise from
resource competition between database processes and
CPU-intensive processes hurts the control performance
of PAT. However, PAT could tolerate such noise and con-
trol the throughput back to the setpoint within 3 periods.
On the other hand, because Speedstep controls the CPU
frequency based on the total system utilization, it usually
sets the DVFS level near the highest level.

Fig.7(c) demonstrates the results in the preemptive
scenario. The preemptive behavior of system processes
leads to a low DBMS throughput due to the interrupt and
resource occupation. It is often the case when the actu-
ator fails to handle the overshoot exceeding its control
limit. PAT treats this case as the exception and tunes
down the CPU frequency to save more energy, such as
the 6th, 13th, 18th, etc. period in Fig.7(c).

Overall, PAT saves up to 51.3% of the energy con-
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Figure 8: The normalized energy consumption and the
performance overshoot of NORMAL, SPEEDSTEP and
PAT in three scenarios. The energy cost is normalized to
the data of NORMAL.

sumption (15% more than the SPEEDSTEP), comparing
with NORMAL in the ideal environment, shown in Fig.8.
Its maximum performance overshoot6 is less than half of
the overshoot in SPEEDSTEP, especially in the compet-
ing and preemptive scenarios. This is because SPEED-
STEP does not take the DBMS performance as the con-
trol goal and the system dynamic gives more error in the
last two scenarios. Here we show the advantage of PAT
by comparing with ACPI baselines. To further study the
performance and the robustness of PAT, we test it with
other control baselines to control the DBMS throughput.

6.3 Control Performance Comparison

Fig.9 is the snapshot of the database throughput, DVFS
setup and the power consumption of four controllers in
the ideal system environment.

TRADITION cannot control the throughput to the set
point because the workload does not always follow the
pattern in the offline analysis. This is a typical problem
of open control. First, finding a good static DVFS for one
workload in one system scenario needs extensive experi-
mental work and complex learning processes. Second, it
could easily fail under workload variations.

HEURISTIC gives a relatively better control per-
formance, comparing with the SPEEDSTEP. However,
when facing an ever-changing workload, HEURISTIC
fails to commit to a steady state in an acceptable time.
For example, data in control period 20 to 30 in Fig.9(a)
show how HEURISTIC fails to handle the “M” shape
throughput pattern. While SCTRL and PAT could both
commit to the setpoint in 4 periods, the tuning of
HEURISTIC oscillates in many steps, which results in
less energy savings. Solving the problem will eventually
leads to the same feedback controller design in PAT.

SCTRL treats the DBMS processing as a black box.
It settles to the setpoint faster than HEURISTIC. How-
ever, when all DBMS processes are in I/O busy waiting,

6 the performance overshoot is measured by Pmax/Rs, where Pmax is
the maximum performance and Rs is the set point
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Figure 9: A snapshot of the database throughput, the
DVFS control signal and the active power consumption
of the four control solutions.
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Figure 10: The normalized energy consumption and the
performance overshoot of four control solutions.

SCTRL would uselessly set the DVFS level to the maxi-
mum, and waste energy.

We conduct the overall performance evaluation of the
five control technique in Fig.10. While PAT achieved
the 20% more energy savings than that of TRADITION,
HEURISTIC and SCTRL only got 56% and 74% of en-
ergy savings achieved by PAT because of the failure to
commit steady state (HEURISTIC) and the unnecessary
setting of the highest DVFS level (SCTRL). Comparing
the performance violation, PAT has the smallest maxi-
mum overshoot than the other two control methods.

6.4 The performance of FWC

Our fuzzy workload classifier provides a high predic-
tion accuracy of the query resource consumption pattern.
The classification result of the tested workload above is
shown in Fig.11. The accuracy is above 90% for the two
testing traces. FWC provides high accuracy in the sys-
tem model for controller design in PAT. Theocratically,
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Figure 11: The prediction result of the query processing
pattern using FWC.

PAT could tolerate up to 45% overshoot from model and
environment based on the controller design. As shown
in Fig.7 and Fig.9, the biggest difference of the work-
load trends is almost 40% but PAT could still control the
throughput to the set point in a few periods.

7 Related Work

Reduction of energy consumption has become an active
topic in the DBMS community. Harizopoulos et al. [6]
and Graefe [5] introduce a new paradigm of DBMS de-
sign concerning energy efficiency. Recent work [30]
shows that there exists energy-efficient query plans in
DBMS. Another work by Harizopoulos [23] suggests
that most energy efficient plans come from DBMS run-
ning in the active low power mode. Poess and Nambiar
[19] examine multiple storage components in the system
for energy saving potentials. Lang et al. [11] claim that it
is worthwhile to scale hardware performance to control
in DBMS’s query processing in the distributed environ-
ment. In contrast to their work, we argue that applying
hardware scaling technique to DBMS design for energy-
saving purposes is not a trivial task and propose a sys-
tematic solution that relies on rigorous control loop de-
sign. As compared to heuristics-based strategies, our so-
lution provides analytical assurance of control accuracy
and system stability.

Application of mathematical control theory has been
conducted in several topics in the DBMS area. Tu et al.
[24] introduce this technique to handle load shedding in
data stream systems by using a classic P feedback con-
troller that successfully avoids noticeable streaming tu-
ple delays with lower data loss. Kang et al. [9] create
Chronos by applying a similar feedback model in con-
trolling number of transactions to a baseline. Our paper,
unlike those two, is one of the first attempts targeting at
energy savings while preserving performance in database
systems. It is inspired by the fact that most database
servers are running in relatively low utilization – energy
proportionality can be achieved if we make database run
under low power modes of hardware.

Recently, feedback control theory has been success-
fully applied to energy efficient control for data center
servers at the system and hardware levels [2, 26, 17].
Existing solutions of power and performance control for
enterprise servers attempt to tackle the problem in two
separate ways. Performance-oriented control solutions
focus on altering power to meet the system-level per-
formance budget while reducing power consumption in
a best effort manner [16]. However, those solutions
do not have any explicit internal information from soft-
ware, such as DBMS. As a result, there could be undesir-
able performance degradation. In the other way, power-
oriented control solutions treat power as the first-class
control target and maximize the performance within the
power budget [2, 26, 28]. In DBMS, its throughput could
not be maximized by control at the system level be-
cause the resource are evenly distributed (Round Robin
scheduling in Linux). Thus, we need to build the control
loop by taking DBMS statistics into consideration.

8 Conclusion and Future Work

The contradictory requirements of high performance and
low energy consumption have attracted a lot of talents
working on database system design. The low-power
modes of hardware provide opportunities for power sav-
ing with predictable performance degradation. In this pa-
per, we tackle the problem of maximizing energy savings
under a user-specified performance bound in database
systems. We argue that such a problem is non-trivial
due to the dynamics in database workloads and envi-
ronment. Therefore, based on the results of our evalu-
ation, traditional offline analysis and heuristic solutions
are not effective. We propose our solution as a feed-
back control framework based on system characteristics.
Unlike heuristic-based adaptive solutions widely used in
database tuning, PAT provides performance guarantees
over the power control on hardware. We implement
PAT with the PostreSQL engine and the empirical re-
sults demonstrate that PAT can achieve high energy ef-
ficiency with small violation of SLA. One immediate fu-
ture work is to consider the performance bound of indi-
vidual queries using DVFS as the global control actuator.
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