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Abstract

Performance has been traditionally regarded as the most
important design goal for database management systems
(DBMSs). However, in recent years, the increasing en-
ergy cost gradually rivals the benefit of chasing after per-
formance. Therefore, there are strong financia incen-
tives to minimize power consumption of a database sys-
tem while maintaining its desired performance, so that
the energy cost can be best amortized. Such a goal is
challenging in practice because the power consumption
of a database system varies significantly with the envi-
ronment and workloads. Many modern hardware pro-
vide multiple modes with different power/performance
tradeoffs. However, existing research has not used these
power modes sufficiently to achieve the best tradeoff
for database services due to the lack of the knowledge
on database behavior under different power modes. In
this paper, we present Power-Aware Throughput control
(PAT), an online feedback control framework for energy
conservation at the DBMS level. In contrast to heuristic-
based tuning techniques commonly used in database sys-
tems, the design of PAT is based on rigorous control-
theoretic analysis for guaranteed control accuracy and
system stability. We implement PAT as an integrated
component of the PostgreSQL system and evaluate it
with workloads generated from various database bench-
marks. The results show that PAT achieves up to 51.3%
additional energy savings despite runtime workload dy-
namics and model errors, as compared to other compet-
ing methods.

1 Introduction

Therapid growth of energy-related research in databases
isdriven by thefact that data centers are energy starving.
The increasing operating expenses of data centers (e.q.,
the electricity bill) quickly deplete the revenue earned
from.database services.due to.its-accumul ating demand

of energy [18]. The power-performancetradeoff has now
become anew key challengein general purpose database
system design [30].

Redesigning DBMS towards high energy efficiency
has been discussed in the database community. Poess
et a. [19] examine the power saving opportunities from
different hardware systems. Lang et a. [11] report large
energy savings by using the dynamic voltage and fre-
guency scaling (DVFS) technique in CPUs. However, it
isnot atrivia task to harvest those opportunitiesin data
processing while maintaining the desired performance .
The DBMS performance could be very sensitive to the
changes in hardware power modes. For example, tun-
ing one step (25%) down in CPU frequency could re-
sult in about 30% performance degradation for CPU in-
tensive queries; in addition, switching low-power modes
in memory is a bad idea due to significant performance
degradation for any DBMS queries, as shown in Fig.1,
Section 2. Therefore, we cannot directly apply existing
hardware power management techniques in DBM Ss for
the energy conservation.

It is also difficult to provide performance guarantees
in a DBMS due to workload variations and environment
dynamics. We need an adaptive architecture that could
promptly monitor query statistics from DBMS and de-
termine whether/to what extend adaption should be per-
formed. Attempting to solve the problem, some studies
employ simple hill-climbing strategies to make such im-
portant adaption decision [11, 10]. These ad hoc control
solutions cannot provide desired control performance,
such as zero steady-state error and short settling time
bound [4]. Although there are many control work done
at the OS level, such as [27, 26, 17], they are not feasi-
ble dueto the lack of critical database informationthat is
needed for making adaptation decisions.

To addressthe af orementioned problems, wefirst need
to understand the nature of the DBMS's response to the
changes of different hardware power modes (“knobs”).
Specifically, we need a quantitative system model in the
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adaptive framework that describes how the DBMS per-
formance changes in response to knobs tuning. Second,
the adaptive framework needsto be implemented in light
weight without affecting the normal DBMS operation.
Finally, the control algorithm shall be robust such that it
could tolerate errors from estimation in the DBM S opti-
mizer and workload variations.

In this paper, we present Power-Aware Throughput
control (PAT), an online feedback control framework for
energy conservation at the DBMS level, to address the
above challenges. Our solution takes advantage of well-
established techniques from the field of control theory,
to deal with systems that are subject to unpredictable dy-
namics [4]. In this solution, we formulate energy con-
servation with performance control at the DBMS level
into a feedback control problem and tackle it with a
proportional-integral (PI) controller based onthe DBMS
system model. Specifically, this paper makes the follow-
ing contributions:

e We explore the relationship among query statistics,
the DBMS throughput, hardware power states, and
the active power consumption® via empirical stud-
ies. Our results show that 1) there exists great en-
ergy savings when tuning DVFS for processing I/0
intensive queries; 2) The relationship between the
DBMS throughput and the CPU frequency is an ap-
proximated linear model when DBMS workloads
are steady; 3) theratio of 1/0O intensive queriesin the
workload plays a major role in the workload statis-
tics that affect the performance of the control.

e Asoneof thefirst attemptsto introduce classic con-
trol theory into the energy management in DBM S,
we design PAT to control the DBMS throughput
while minimizing the active power consumption.

e We design and implement a query classifier based
on the fuzzy set theory. The classifier provides
important information, such as the ratio of I/O
queries, which plays a key role in achieving effec-
tive throughput control. The fuzzy-logic-based de-
sign also provides new insights to the classic prob-
lem of query clustering.

e We implement PAT within the reall DBMS — Post-
greSQL and evaluate it with various baselines. The
results show that, PAT has significantly more energy
saving (51.3%) with theleast control errors compar-
ing with other control baselines.

The rest of the paper is organized as follows: we first
discuss our study on characterization of database system

1 we use the active power of the whole system for the measurement
throughout this paper. Any power data, if without specification, is the
active power of the system.

in Section 2. Section 3 introduces the overall control
framework; Sections 4 and 5 present the design and anal-
ysis of the workload classifier and controller in PAT, re-
spectively. Section 6 talks about our empirical evaluation
of the proposed control strategy. Section 7 compares our
work with related work; Section 8 concludes the paper.

2 System Characterization Study

In this section, we report our findings based on empirical
studies of database behavior as a foundation of control
framework design.?

In our study, we focus on the DBMS throughput
(query per second, QPS) as the main performancemetric.
Thethroughput, as the reciprocal of the average response
time, is an important performance metric. For example,
transaction processing performance council (TPC) uses
throughput to define and rank the performance of differ-
ent DBM S products[22]. To keep the DBM S throughput
within adesired level isessential to avoid situations, such
as overloading. We take controlling the response time of
individual queries as afuture work for the design of PAT,
which will not be discussed in this paper.

The impact of hardware power modes with different
DBMS workloads: to further understand the impact of
low-power modes in different hardware components on
the power consumption and the performance of database
services, we use five power states of the memory (de-
scribed in [3]), four discrete DVFS level of the CPU (de-
scribed in [27]), and the CPU C-state (described in [15]
and labeled as “DVFS0”). To avoid possible bias from
measurement errors, we repeat experiments using CPU
intensive and 1/O intensive workloads in severa trials
and collect the average result, demonstrated in Fig.1.

Fig.1(a) and Fig.1(b) show the DBMS performance
and the power measurement of different power statesin
memory under two types of DBMS workloads. As we
can see, astatetransitionin memory, such asfromthe ac-
tive state to the active-standby state, can contribute to at
most a 10% saving in active power. However, the power
saving comes with a severe performance penalty as a
95% performance degradation in CPU workloads and a
98% degradation in I/O workloads after the transition.
The penalty comes from unacceptable low 1/0 band-
widths from memory low power modes, which make any
processing queriesenter infinite cyclesof 1/0O wait. Thus,
athough [3] claims energy savings from tuning power
states in the memory, it may not be afeasible solution for
database services. As aresult, we find that any hardware
power management techniques which increase per-page
1/0O cost may have a severe consequence on the DBMS
throughput, which eventually leads to unacceptable high
energy cost.

2 details of the experiment setup can be found in Section 6.1.

www.manaraa.com



Performance (%)

(€) (b)
100% — 100% 100 % 100 %
: g
g€ 8 S
50% - - 50% E% é 50% - - 50% c%
5
0% %74‘ 00 0% e 0%
oo i
R R, R R,
%% %, RO
%, 7 %, 7
4%, 4. %,
%, %,

Performance 67073
e EEEE

(d)
100 %

100 %

100 % 100 %

50% - 50% - 50 %

Performance (%)
Performance (%)

0%

0%

Figure 1. Performance (throughput) of a 100GB database system under low power states of the memory (Fig.a and
Fig.b) and the CPU (Fig.c and Fig.d). All data are normalized to the normal scenario with active memory and CPU
at 100% frequency. Fig.aand Fig.c are results of CPU-intensive queries. Therest are results of 1/0 intensive queries.
DVFS0isthe CPU C-state, in which the system isin halt and there is no observed DBM S throughput.

Fig.1(c) and Fig.1(d) illustrate the results of different
DBM Sworkloadsrunningin different CPU power states.
One observation is that, in both I/O intensive and CPU
intensive queries, the active power cost monotonically
decreases with the CPU frequency. Thisisin conformity
with results reported in [14, 23]. The DBMS through-
put, on the other hand, shows the same behavior. Such
observations imply that CPU frequency and system per-
formance are positively related and this gives us confi-
dence in building an approximated linear system model
between performance and power consumption. Never-
theless, comparing Fig.1(c) and Fig.1(d), the DBM S sen-
sitivity® is different in CPU intensive and 1/0 intensive
workloads. Apparently, one could harvest more power
savingsfrom /O intensive querieswithout affecting their
performance much.

Fig.1(c) and Fig.1(d) also demonstrate system reac-
tion to the CPU C-state (DVFS0) in terms of power and
performance. When the CPU is set to the C-state, the
whole system isin the halt state. We did not observe any
DBMS throughput although the active power consump-
tion is low. At the same time, the delay of transiting
infout of the CPU C-state is so large that it jeopardizes
the normal query execution in the DBMS, and leads to
uncorrect query results. Thus, we do not implement the
CPU C-statein PAT for power saving purposes but eval-
uateit in asimulation in our tech report [29].

The above experimental results show that CPU DVFS
technique is a good candidate for the control actua-
tor. Next we further explore the insight from results of
Fig.1(c) and Fig.1(d).

CPU power states, the DBMS throughput and work-
load statistics: Fig.2(a), again, demonstrates the fact that
the active power consumption is linearly related to the
relative DVFS level. The power and the performance

3 The sensitivity is defined as the change of performance in response
throughput

to CPU frequency changes, as (m> .
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Figure 2: The impact of the CPU fregquency (i.e., DVFS
level) on the power consumption (a) and the DBMS
throughput (b). The five workloads in (b) differ by their
ratios of 1/0 intensive queries A. All datain (b) are nor-
malized to the largest throughput of the workload with
A = 5% at the maximum CPU freguency.

data in Fig.2(b) are recorded from experiments running
DBMS workloads with different statistics (i.e., different
ratio of 1/0 intensive queries ). An important observa-
tion from Fig.2(b) is that, there exists a linear relation-
ship (R? = 0.9633) between throughput and CPU fre-
quency for all DBM S workloadswhen A isfixed. There-
fore, we use the following linear model to describe the
relationship between database throughput and CPU fre-
quency,

r=ALf+B (1)
Where r is the DBMS throughput, f is the CPU fre-
quency, and A, B are model coefficients.

Among all theworkload characteristics, we found that
the ratio of 1/O-intensive queries A is the major fac-
tor that affects the sensitivity, as shown in Fig.2(b).
Our explanation is that, in our platform, Linux system
uses Round-Robin as the process scheduling algorithm.
Therefore, the more queries are bounded by 1/0O, the
larger chance that those processes will skip their CPU
time dlices, thus keeping the CPU idle. Asaresult, ahigh
A makes the system less sensitive to the CPU frequency
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Figure 3: The reationship between workload's

frequency-to-throughput ratio and the percentage of 1/O-
intensive queriesin the workload (1).

changes. When 4 is larger enough, as the grey line in
Fig.2(b), the database performance haslittle change with
the CPU frequency, where we could harvest the most en-
ergy savings. This sensitivity of the DBMS performance
to the CPU frequency changes is measured as the slopes
of all the throughput-DVFSlinesin Fig.2(b).

Fig.3 shows that the relationship between A and the
sensitivity is also linear (with a goodness-of-fit R? =
95%). Since A isessentia in our throughput control, itis
necessary to estimate the value of A to identify the work-
load at runtime. Note here, when thevalueof A increases
from 20% to 30% in Fig.2(b), the DBMS throughput
drops heavily (50%) at the highest DVFS level. There
is a value between 20% to 30%, we called it 3, that de-
fines an infection point. When the system crosses this
point (A > ), it will enter an I/O busy waiting state.
Thisstateisa“Limbo” that we are trying to avoid in our
experiment. The value of B is a relative static number
for any given systems. It can be found during the sys-
tem identification process. In our experimental database
system, the value of 3 is found to be 32%.*

3 TheFramework of PAT

The control framework PAT isillustrated in Fig.4. The
main components of PAT form a feedback control loop
(indicated by the red arrow in Fig.4), including the Pl
controller (Controller), the throughput monitor of the
DBMS (Plant),® and the CPU power state modulator
(Actuator). The goal of the control loop isto maintain
the DBMS throughput at the set point Rs and mini-
mize the power cost. Specificaly, the following steps
are invoked in each control period,

1. The throughput monitor measures system through-
put r(i — 1) in the last period. The control error is
computed as Ar (i) = Rs—r (i — 1);

2. The controller receives the control error Ar and the
workload statistic factor A. Based on these values,

4 The value of B needs to be calibrated when PAT is applied to a
different system environment
5 Note that the monitor itself is not the plant, the DBMSiis.
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Figure 4: The power-aware throughput control architec-
ture. The namesin parentheses are given following con-
trol terminology.

it computes the control signal f(i);

3. The CPU power state modulator receivesthe control
output f, to calculatethe new DVFSlevel and apply
itinthe CPU.

4. Exception: when A > 3 or the DVFS level is high-
est but the detected throughput still failsto meet the
set point Rs, the CPU modulator will set the DVFS
level to the active lowest state to save power for a
short period of timet.

Note here, the duration t is shall be smaller than T, and
we assume the transaction time of different power state
is at least one order of magnitude smaller thant.

3.1 Control Components

Before discussing more detail s about the two major com-
ponents — the fuzzy workload classifier (FWC) and the
PI controller, we briefly introduce the implementation of
other components of PAT first.

CPU Power Sate Modulator: PAT uses Intel’s Speed-
Step technique (10ms overhead) to tune the CPU DVFS
level. An interesting issue is that the Intel Xeon CPU
E5645 used in our platform (as well as many other
DVFS-enabled CPUs) only supports several discrete
CPU freguency levels. However, PAT needs to set a
value of the DVFS level within a normalized continuous
range [0 — 100]. Therefore, the task of the modulator is
to approximate the desired value using a combination of
the supported discrete frequency levels. For example, to
get 2.23 GHz CPU frequency during one control period,
the modulator would output pseudo frequency signal se-
quence as {2.67, 2, 2, 2.67, 2, 2} to emulate the aver-
age CPU frequency as 2.23 GHz. To realize such idea,
we implemented a first-order delta-sigma modulator in
the system, which is commonly used in analog-to-digital
signa conversion [12].

Throughput Monitor: the throughput monitor is im-
plemented as a daemon program that collects the number

www.manaraa.com



1/0 Queries
non-1/0 Queries  x

(a) Estimated (b) Runtime
104 ¢ : : 5 80
S 4
S 60| AN
$ 10° ¢ .5
2 8
2| =
10 5
10" : 1= S
ST R To S To N To 0 25 50 75 100

Tuples CPU Utilization (%)
Figure 5: The estimated resource demand (a) and the real
resource usage (b) of 500 different queries. Each nodein
the figure stands for one query.

of finished queries in each control period. The monitor
traces every exit signal from DBMS threads and records
the sum in period i. The monitor maintains throughput
data from the past n periods.

System Utilization Monitor: the system utilization
monitor is a program that records system status (e.g.,
CPU utilization) when PAT is active. We use the col-
lected data for the performance analysis.

Query Resource Consumption Estimator: the resource
estimator is a tool that retrieves the run-time query es-
timation information from the query optimizer of the
DBMS. Based on such information, FWC could define
the query type and update the corresponding parameter
A. Notethat the original resource estimator inthe DBMS
could be highly unreliable. We calibrate this estimator
before using it for estimation. The detailed work can be
found in the tech report [29].

4 Fuzzy Workload Classifier

Aswelearned from the observationsin Section 2, the key
factor in the workload statistics used in the system model
is the percentage of 1/0 intensive queries in the current
running workload, namely A. Thus, to successfully build
the system model in order to control a composite work-
load, the model shall update the value of A on-the-fly. To
solve this problem, we need to classify queries based on
its I/O intensity.

4.1 Main Challenge

Fig.5(a) shows the classification results of 500 queries
based on a static threshold — 1,000 demanding pages,
which is the size as the L3 cache in the server. Each
query is labeled as I/O-intensive if the I/O cost is more
than 1,000 pages (green node) or non-1/0 intensive (red
node), otherwise. However, such a rule-based method
fails when the resource estimation given by the query
optimizer is not accurate enough to reflect the actual re-

quested resource at runtime. Fig.5(b) shows the rea re-
source usage of the same set of queries. Theresults show
only apart of identified I/O queriesarereal 1/O-intensive
queries (e.g., those nodes in circle A in Fig.5(b)). The
above empirical results show that simplerule based clas-
sification fails at obtaining the accurate A value.

We propose a classification approach based on fuzzy
set theory to solve our problem. Fuzzy-based methods
are particularly suitable for systems with complex be-
haviors. They are designed to handle unpredictable envi-
ronment with limited number of rules to reach sufficient
accuracy [25, 21]. Our FWC collects workload statis-
tics and creates fuzzy rules to identify runtime resource
consumption patterns of queriesin the workload.

4.2 Fuzzy Classifier Design

In FWC, Sugeno-type fuzzy rules [21] are generated
fromthe clustered datafor modeling database workloads.
Theinput for the FWC is the resource demand of the in-
coming query and the output is the aggregated estimation
of runtime resource utilization. For the it" query, its re-
source demand vector is denoted as [dgpy . d] ] and the
estimated CPU and I/O utilization as [ugpy . Uj )T The
number of fuzzy rules shall be the same as the number
of clustersin the estimated resource demand map [8]. In
our case, there are two clusters: 1/O-intensive and non-
I/O-intensive. The member functions of the fuzzy rules
are linear functions generated via rigorous mathematical
tools from Matlab [13]. The rule base is constructed as
follows:

Ri: IF  [dgpy.dio]T € cluster X,  THEN

[uiCPU ) Ui /O]T =M [diCPU ’ d|i/o]T +N;

where X is the cluster determined by clustering tech-
nique, M;j and N; are parameters from the fuzzy set asso-
ciated membership functions obtained from the learning
process. The symbol € stands for the distance between
the node and the center of cluster X;. The procedure of
workload classification are as follows:

1. Evaluation: computethe appropriatefuzzy rule out-
put [Ugpy, Y, /O]T based on the input resource de-
mand vector [dcpy, d| /O]T using the corresponding
membership functions M and Nj;

2. Implication calculation: obtain implication p; of
each fuzzy set R; and calculate the confidence t;
that the query belongs to fuzzy set R based on the
implication weight over all 2;‘3572)]‘)"1 ;

3. Aggregation result: the output of all fuzzy rules
are aggregated and inversely trandated into the av-
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erage utilization vector [¥;tjUgpy, X tju; 0] from
al ruleswith confidencet;.

Although there dtill exist errors from workload classi-
fication, those errors are bounded and smaller than the
acceptable maximum tolerance (overshoot) in the con-
troller design. Due to the page limit, we put a detailed
analysis and examples of FWC in our tech report [29].
The accuracy of FWC is evaluated in Section 6.

5 Throughput Controller Design

51 System Modeling

Building an accurate mathematical model of the system
to be controlled is of great importance to the entire con-
trol loop design. We build the model of the DBMS
throughput and the power consumption based on obser-
vationsin Section 2. Let us denote the length of the con-
trol period as T and the throughput within the it" period
asr(i). Givenr(i), our control goal is to guarantee that
the DBMS throughput r could be converged to the set
point Rs after a finite number of control periods (settling
time). Note here, for better establishing the model we
scale those two values into percentage. Thus, Ar and
f are now the relative control error and the related fre-
guency setting, respectively. For example, f = 100%
means that CPU is running at its highest frequency. In
the experiment, the minimum avail able frequency is 40%
of the maximum frequency.
Here we update the system model in Eqg. (1) as:

Ar(i) = AAT(i) +B ©

For the convenience of the control analysis, Eg. (2) is
transformed in the z-domain as:

R(z) = AAF(2) 3

whereR(z),F (z) arethe z-transform of signal Ar (i), f (i),
respectively. Thus, the system transfer function of the
DBMS throughput to the frequency changein Fig.2 is:
R(2)
=——==AA 4
G2 = ¢ 2 A 4
We test the system with sinusoidal inputsin Fig.6. Fig.6
demonstrates that our model is sufficiently close to the
actual system with RZ = 0.9152.

5.2 Controller Design

The goal of the controller design isto meet the following
godls:

o stability, the throughput shall settle into a bounded
range in response to a bounded reference input;

70% (a) Relative Frequency
60% ;‘_‘_‘_LLLH -"L\_LL _,—‘—’; f H‘_HILH
S 50% o o
40 % -LLH_‘_L‘— _,_,_-—'-f
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Figure 6: A sinusoidal throughput Ar (i) and related con-
trol signal (i) .

e zero steady state error, when the system enters the
steady state, the throughput shall settle to the set
point with zero errors; and

e short settling time, the system shall settle to the set
point before the specified deadline.

Based on the control theory, we design a Proportional -
Integral (Pl) control that has been widely adopted in in-
dustry control systems. We select the Pl controller for its
nice property of the zero-state-error and its fast response
[4, 7]. The Pl controller can also provide robust control
performance despite modeling error and input/output dis-
turbances. It has the following form in the discrete time
domain: .

1
f(i) = keAr (i) +ki D (Ar(j)) ©)

1
where Ar (i) is the control error at i'" period. f(i) isthe
frequency offset. k; and kp are control parameters. Those
parameters can be analytically chosen to guarantee the

system stability and zero steady-state error. From Eq.
(5), we have the controller transform function in the z-

domain as:
~ z(k +kp) —kp
Clg) = =" ®)
Overal, thetransfer function F(z) = G(2)C(2) is,
AAKp(z— 1) + LAk Z @

F(2) = (1+2A(k +kp))z— (AAkp + 1)

We use the Root-Locus method [7] to design the con-
trol coefficients k; and kp to guarantee stability and zero
steady-state error. The poles of the transfer function are
—0.26+0.8i. Asboth eigenvaluesareinside one unit cir-
cle, the closed-loop system in our experiments is stable
[4]. The values of the system model parameters in Eq.
(2) are A = 4.329 and B = 24.329, based on our char-
acterization study. A is provided at runtime by FWC.
Based on the result of control analysis, control parame-
tersk; = 0.5 and kp = 1.06. More details of the control
analysisarein the tech report [29].
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Figure 7: A snapshot of the database throughput, the DVFS control signal and the active power consumption of
NORMAL, SPEEDSTEP and PAT in three different system settings.

20

6 Performance Evaluation
6.1 Experimental Setup

Our test bed contains an open-source database Post-
greSQL (version 8.3.18) running under Redhat 5 (kernel
version 3.0.0). The data server is a DELL PowerEdge
R710 with 12-core Intel Xeon E5645. A client feeds the
server with a typical database workload generated from
TPC tools[22] and SDSS traces[20]. We use a WattsUp
power meter ( +1.5% error, 1 Hz sampling frequency
[1]) to measure the power consumption.
We have designed several baselines for evaluation.

1) NORMAL and TRADITION: thosetwo baselinesare
common Advanced Configuration and Power Inter-
faces (ACPIs) inmodern servers. NORMAL iswhen
system runs with the maximum CPU frequency and
TRADITION sets a static CPU frequency based the
offline workload analysis.

2) SPEEDSTEP, HEURISTIC and SCTRL: SPEED-
STEP is the ACPI policy in BIOS that tunes
the CPU frequency according to the system load.
HEURISTIC is an ad hoc control solution with the
DBMS performance set point Rs. SCTRL isan OS-
level feedback control solution with the DBMS per-
formance set point Rs. Comparing with PAT, it con-
tains the basic control loop with throughput moni-
tor to detect the DBM S throughput except the FWC
and any internal parts of the DBMSin Fig.4. Note
that, when those control solutions control the CPU

25
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30 35 40 45 50 5 10 15

Control Period

20 25 30
Control Period

process is the only user of al the computationa re-
sources; 2) Competing environment, there exists a set
of pure CPU intensive programs in the system compet-
ing for the CPU resource. 3) Preemptive environment,
there exists a set of high-priority (OS-level) processes
which randomly occupies the CPU resource assigned for

database processes. Fig.7 shows
put, the DVFS control signal, and

the database through-
the active power con-

sumption of the system using NORMAL, Speedup and
PAT (Rs = 17QPS) in above scenariosin 50 control peri-

ods.
In Fig.7(a), SPEEDSTEP and

PAT provide signifi-

cantly larger energy savings than NORMAL does. Com-
paring with SPEEDSTER, PAT controls the throughput

performance strictly to the setpoi

nt, and the maximum

overshoot (throughput exceeding the set point) is much

smaller.

In the competing scenario in Fig.7(b), the database

throughput is greatly affected by
intensive processes, which are i

tem follows a Poisson distribution.

the competing CPU-
njected into the sys-
The noise from

resource competition between database processes and
CPU-intensive processes hurts the control performance
of PAT. However, PAT could tolerate such noise and con-
trol the throughput back to the setpoint within 3 periods.
On the other hand, because Speedstep controls the CPU
frequency based on the total system utilization, it usually
sets the DVFS level near the highest level.

Fig.7(c) demonstrates the results in the preemptive

scenario. The preemptive behavior of system processes
leads to alow DBMS throughput due to the interrupt and
resource occupation. It is often the case when the actu-
ator fails to handle the overshoot exceeding its control
limit. PAT treats this case as the exception and tunes
down the CPU frequency to save more energy, such as

frequency, other power management policies are
turned off.

6.2 Performance of PAT
To study the impact of PAT on performance and energy

savings, we have designed three scenarios from daily
DBMS operations. 1) Ideal environment: the database

the 6th, 13th, 18th, etc. period in Fig.7(c).
Overall, PAT saves up to 51.3% of the energy con-
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Figure 8: The normalized energy consumption and the
performance overshoot of NORMAL, SPEEDSTEP and
PAT in three scenarios. The energy cost is normalized to
the data of NORMALL.

sumption (15% more than the SPEEDSTEP), comparing
with NORMAL intheideal environment, shownin Fig.8.
Its maximum performance overshoot® isless than hal f of
the overshoot in SPEEDSTER, especially in the compet-
ing and preemptive scenarios. This is because SPEED-
STEP does not take the DBM S performance as the con-
trol goal and the system dynamic gives more error in the
last two scenarios. Here we show the advantage of PAT
by comparing with ACPI baselines. To further study the
performance and the robustness of PAT, we test it with
other control baselines to control the DBM S throughpuit.

6.3 Control Performance Comparison

Fig.9 is the snapshot of the database throughput, DVFS
setup and the power consumption of four controllersin
the ideal system environment.

TRADITION cannot control the throughput to the set
point because the workload does not always follow the
pattern in the offline analysis. Thisisatypica problem
of open control. Firgt, finding agood static DVFSfor one
workload in one system scenario needs extensive experi-
mental work and complex learning processes. Second, it
could easily fail under workload variations.

HEURISTIC gives a relatively better control per-
formance, comparing with the SPEEDSTEP. However,
when facing an ever-changing workload, HEURISTIC
fails to commit to a steady state in an acceptable time.
For example, datain control period 20 to 30 in Fig.9(a)
show how HEURISTIC fails to handle the “M” shape
throughput pattern. While SCTRL and PAT could both
commit to the setpoint in 4 periods, the tuning of
HEURISTIC oscillates in many steps, which results in
less energy savings. Solving the problem will eventually
leads to the same feedback controller design in PAT.

SCTRL treats the DBMS processing as a black box.
It settles to the setpoint faster than HEURISTIC. How-
ever, when all DBMS processes are in 1/O busy waiting,

6 the performance overshoot is measured by Rpax/Rs, where Prax is
the maximum performance and R is the set point

(a) Thoughput SETPOINT ——
& TRADITION
g HEURISTIC
S 30 SCTRL
E; g PAT ——
3 20N\
£
=
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Figure 9: A snapshot of the database throughput, the
DVFS control signal and the active power consumption

of the four control solutions.
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Figure 10: The normalized energy consumption and the
performance overshoot of four control solutions.

SCTRL would uselessly set the DVFS level to the maxi-
mum, and waste energy.

We conduct the overall performance evaluation of the
five control technique in Fig.10. While PAT achieved
the 20% more energy savings than that of TRADITION,
HEURISTIC and SCTRL only got 56% and 74% of en-
ergy savings achieved by PAT because of the failure to
commit steady state (HEURISTIC) and the unnecessary
setting of the highest DVFS level (SCTRL). Comparing
the performance violation, PAT has the smallest maxi-
mum overshoot than the other two control methods.

6.4 The performance of FWC

Our fuzzy workload classifier provides a high predic-
tion accuracy of the query resource consumption pattern.
The classification result of the tested workload above is
shown in Fig.11. The accuracy is above 90% for the two
testing traces. FWC provides high accuracy in the sys-
tem model for controller design in PAT. Theocratically,
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Figure 11: The prediction result of the query processing
pattern using FWC.

PAT could tolerate up to 45% overshoot from model and
environment based on the controller design. As shown
in Fig.7 and Fig.9, the biggest difference of the work-
load trends is almost 40% but PAT could still control the
throughput to the set point in afew periods.

7 Related Work

Reduction of energy consumption has become an active
topic in the DBMS community. Harizopoulos et a. [6]
and Graefe [5] introduce a new paradigm of DBMS de-
sign concerning energy efficiency. Recent work [30]
shows that there exists energy-efficient query plans in
DBMS. Another work by Harizopoulos [23] suggests
that most energy efficient plans come from DBMS run-
ning in the active low power mode. Poess and Nambiar
[19] examine multiple storage componentsin the system
for energy saving potentials. Lang et al. [11] claim that it
is worthwhile to scale hardware performance to control
in DBMS's query processing in the distributed environ-
ment. In contrast to their work, we argue that applying
hardware scaling technique to DBM S design for energy-
saving purposes is not a trivial task and propose a sys-
tematic solution that relies on rigorous control loop de-
sign. As compared to heuristics-based strategies, our so-
lution provides analytical assurance of control accuracy
and system stability.

Application of mathematical control theory has been
conducted in several topicsin the DBMS area. Tu et d.
[24] introduce this technique to handle load shedding in
data stream systems by using a classic P feedback con-
troller that successfully avoids noticeable streaming tu-
ple delays with lower data loss. Kang et a. [9] create
Chronos by applying a similar feedback model in con-
trolling number of transactionsto a baseline. Our paper,
unlike those two, is one of the first attempts targeting at
energy savingswhile preserving performancein database
systems. It is inspired by the fact that most database
servers are running in relatively low utilization — energy
proportionality can be achieved if we make database run
under low power modes of hardware.

Recently, feedback control theory has been success-
fully applied to energy efficient control for data center
servers at the system and hardware levels [2, 26, 17].
Existing solutions of power and performance control for
enterprise servers attempt to tackle the problem in two
separate ways. Performance-oriented control solutions
focus on altering power to meet the system-level per-
formance budget while reducing power consumption in
a best effort manner [16]. However, those solutions
do not have any explicit internal information from soft-
ware, such asDBMS. Asaresult, there could be undesir-
able performance degradation. In the other way, power-
oriented control solutions treat power as the first-class
control target and maximize the performance within the
power budget [2, 26, 28]. In DBMS, its throughput could
not be maximized by control at the system level be-
cause the resource are evenly distributed (Round Robin
scheduling in Linux). Thus, we need to build the control
loop by taking DBM S statistics into consideration.

8 Conclusion and Future Work

The contradictory reguirements of high performance and
low energy consumption have attracted a lot of talents
working on database system design. The low-power
modes of hardware provide opportunities for power sav-
ing with predictable performance degradation. Inthispa-
per, wetackle the problem of maximizing energy savings
under a user-specified performance bound in database
systems. We argue that such a problem is non-trivial
due to the dynamics in database workloads and envi-
ronment. Therefore, based on the results of our evalu-
ation, traditional offline analysis and heuristic solutions
are not effective. We propose our solution as a feed-
back control framework based on system characteristics.
Unlike heuristic-based adaptive solutions widely used in
database tuning, PAT provides performance guarantees
over the power control on hardware. We implement
PAT with the PostreSQL engine and the empirica re-
sults demonstrate that PAT can achieve high energy ef-
ficiency with small violation of SLA. Oneimmediate fu-
ture work is to consider the performance bound of indi-
vidual queries using DVFS asthe global control actuator.
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